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Tolerance Requirements for Dispersion Free
Single-Mode Fiber Design: Influence of

Geometrical Parameters, Dopant
Diffusion, and Axial Dip

PIERRE-LUC FRANCOIS

Abstract-The dispersion sensitivity to small changes in index-differ-

ences, radius, and wavelength is investigated in the case of dispersion

free single-mode fibers. If a minimum bandwidth is required, tolerances

on the various parameters can then be deduced: singly- and doubly-clad

structures are compared. Constant reference is made to the HE1l mode

spot-size to relate dispersion properties and attenuation. A nonzero

fundamental mode cutoff is shown to induce an enhanced sensitivity

to a change in fiber geometrical characteristics. The effect of dopant

diffusion and axial dip on dispersion is then considered and conclu-

sions are drawn concerning the use of profiies measured on preforms

to predict fiber propagation properties.

I. INTRODUCTION

SINCE the successful development of ultra-low loss fibers

[1] , [2], considerable interest was devoted to minimizing

chromatic dispersion [3], [4], especially in the A = 1.55 Urn

window. Singly-clad fibers with Ge02 -doped silica core were
first used but high index-differences are then necessary to

achieve zero dispersion; this was found to increase the fiber

losses more than was expected by the increase in Raylei@

scattering with increasing germanium concentration [5]. Pro-

files with depressed cladding were then used to reduce the

amount of Ge02 in the core. With F/Pz 05 doped inner-

cladding, very low attenuation was again achieved [6]. The

added degree of liberty introduced by this doubly-clad struc-

ture allowed minimizing the dispersion over a wide spectral

range [7], [8] . In some cases, however [9] , the fundamental

mode has a nonzero cutoff resulting, as will be shown, in an

enhanced dispersion sensitivity to any change in geometrical
fiber parameters.

We derive a general expression for chromatic dispersion in

the case of a multicomponent structure and apply it to fibers

with Ge02 -doped silica core and F/Pz 05 doped inner-cladding.

Zero chromatic dispersion at k = 1.55 urn is then considered

in some details with constant reference to the HEII mode

spot-size, which governs splicing and microbending losses. The

sensitivity of dispersion to changes in index-differences, radii,

and operating wavelength is investigateed; we also derive a very

simple expression for the bandwidth X length product. The

preceding results are then used to find tolerance requirements

ensuring a given minimum fiber bandwidth.

Influence of dopant diffusion and axial dip on chromatic

dispersion is then evaluated. The use of a slight change in

geometrical parameters to compensate the effects of diffusion
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and dip is considered and conclusions are drawn concerning

the use of refractive-index profdes measured on preforms to

predict fiber propagation characteristics.

II. DISPERSION FREE FIBERS

A. Notations

Consider weakly guiding structures with depressed inner-

cladding (Fig. 1), having a circular-symmetric refractive-index

distribution n(r)

n2(r) =rz~ + (n! - rz~)fl(r) + (n; - n~)fz(r) (1)

where

no = outer-cladding refractive-index (silica substrate)

nl = maximum refractive-index in the core

n2 = minimum refractive-index in the inner-cladding

j’, (r) and

.fZ (r) are profde functions corresponding to the core and

inner-cladding, respectively, and take values between

O and 1 [see Fig. l(a), (b)].

The profde functions ~1 (r) and ~2 (r) are nonzero for O < r <

al and az < r < bz; their actual shapes may be chosen to de-

scribe departures from a perfect step-index profile (dotted

lines in Fig. 1) which always occur in practical fibers. In the

subsequent discussion, axial dip and grading caused by dopant

diffusion wiIl be considered.

For future use, we define the following parameters.

Geometrical Parameters:

a = core radius of the undeformed step-index profde

b = inner-cladding radius of the undeformed step-index

profile

c = bla

n; - n;.A1=— AZ =
2rr~ ‘

~(A1,1A21 <<l)
0

u =- A2/Al.

Mode Parameters:

k = 2rr/A, wave number in vacuum

V = kano ~ = ka _ = normalized frequency

P = propagation constant of the HEII fundamental mode

W =ai=

~ = f12- k2n; wz
= ~ = normalized propagation constant

k’(n? - n%) V

(2)
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Fig. 1. Typical shape of profile functions used to describe dopant
distribution in (a) the core and (b) inner-cladding; (c) refractive-index
profile with diffused core and inner-cladding boundaries.

Owing to the stationary property of this equation, partial

derivation with respect to k yields

J“d
— (k’nZ(r)) t2r dr

o dk
2pg= ~

f $2rdr

(8)

Jo

Substitution of (1) into (8) provides a relation between the

effective index n= =P/k and group indexNe = df3/dk = d(kne)/

dk of the mode and the group indexesNi = d(kni)/dk~ i = 0,1,2

neNe = nONO + (nl Nl - nONO) 1’1 + (n2N2 - nONO) rz.

(9)

The transit time per unit length ~(~) of a mode is equal to

@) = Ne/cO (c. is the light velocity in vacuum) and may be

expanded as a Taylor series about the mean wavelength & of

the source

J“ Jfl (r) ~’r dr m f’(r) IJ2r dr
The dispersion coefficient D1 = dr/dA is then equal to

rl= 0 ~ ;rz=om

J J

(3) Dl=g=;d~=-~ti (11)

v2r dr $’rdr
o Co dA2 AS”

o 0 Differentiation of (9) with respect to wavelength yields the

where ~(r), electric field distribution of the HE1l mode, is expression for D1

the solution of the scalar wave equation (under the weak guid- Dl=sm+sw+sww (12)

ante assumption) [10], [11 ]
with

Attj(r) + [k’n’(r) - 62] v(r)= O (4)

~~ [n:+ (nl - n;) rl + (nl - n;) r2 ]Sin=- — (12)’
or

Ar@r(u) + V2 ~1 (au) - uf2(au) -B] @(u)= O

with

u = r/a, @(u) = t(m) (12)”

(A, is the transverse part of the scalar Laplacian operator).
[( )

drz
~. (n~ - n:) 2V3- uV~sm~ “ —

In most cases, more than two dopants are used in fiber fabri-

cation and, in the weakly guiding case, (1) is generalized as dI’z
[12] 1+(nj-n~)V~

n2(r) =rz~+f (n? - n~)fj(r) (6)
j=l

where the summation is extended over p dopants.

As above, parameters Ai, ui = -Ai/Ai(i > 2), and I’f(3) may

then be defined.

B. Dispersion in ikfultidopant Fibers

From (4) we deduce a variational expression for the propaga-

tion constant /3 [13]

-J” JlVJ12rdr+ - k2n2(r)t2rdr

/32= 0
0

(7)
r-

(12)’”

where the prime indicates differentiation with respect to

wavelength.

The assumption of weak guidance was used throughout and

only first order terms in index-differences or their derivatives

were retained.

A simplification of (12) is possible when using a relation

existing between rl, 1’2, rr, and B. From the definition (2)

of B, one can express ~’ as

1.?2= k2 [n: + (rz? - n~)B]. (13)

Assuming, for our particular purpose, nO and n ~ to be inde-

pendent of wavelength, we obtain by differentiation of (13)

with respect to k the following expression for neNe

()neNe=!%#+(+# ‘(VB)+B
k dk 2 dV “

(14)J ~’rdr
o
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With the same assumption, (9) reads

n&e ‘n; + (n; - n:) rl + (nj - n:) rz

=t2:+@-~g )[rl-Or 2]. (15)

Identification of (14) and(15) yields the relation

‘l-”r,=:(F+B). (16)

Using (16), the expression for D1 may then be rewritten as

Dl=sm+sw+smw (17)

with

sm=--$- [r2; +(nl-n:)r1+(nj -ng)rz] (17)’

rzOAl ~ d2(Vl?)
SW’-— —

llco dV2
(17)”

[(1 rz; -n; v d2(VB)+ d(vB)_ B
Smw = — — .

co 2 dV2 dV )

drl drz

1
+(rz;-rz;)vz+(n;-n;)v~ . (17)’”

The material dispersion term Sm (17)’ is equal to a weighted

average of the material dispersions of silica and of dopants 1

and 2, with weights I-rl -1’z, rl and r2. From (3), rl and

172 are always smaller or equal to the fractions of the total

power which travel in the core and the inner-cladding, respec-

tively; there is equality only in the ideal case of a perfect step-

index profiie. The waveguide dispersion term SW(17)” depends

only on B and has exactly the same expression as in singly-clad

structures [14]. The last term SmW (17)’” is the so-called

composite dispersion [14].

In the case of a uniform cladding, n2 = no, u = - Az/A1 = O,
and 1’2 = O. With these simplifications, substitution of (1 6)

into (17) gives expressions for Sm, SW, and SWW which only

depend on the normalized propagation constant B and are

exactly identical to previously published ones [14].

In the case of more than two dopants, SW keeps the same

expression (17)”, but (17)’ and (17)’” may be generalized as

[(1 rz;-rz: v d2(VB) + d(VB) _ B— —
srnw=— ———

co 2 dV2 dV )

(18)

(18)’

where the summation is extended over p dopants.

The dominant term in (18) is the silica material dispersion

Smo = -M#co equal to 21.9 ps/(km . nm) at X = 1.55 pm.

The composite dispersion s~~ is often neglected (%W in order
of 0.1 ps/km . rim), but nevertheless was retained in our

calculations.

C Dispersion Free Fiber Design

We consider only the best candidate for dispersion free

propagation in the A = 1.55 Mm ultra-low loss window: it seems

to be a fiber composed of a GeOz -doped Si02 core and a

P205/F-doped SiOa cladding [6] -[8]. We are thus herein the

case of a three-dopant structure. A small germanium concen-

tration and a low drawing temperature were shown to be two

essential conditions to achieve low losses with fibers made by

MCVD [5]. Fluorine doping creates a depressed inner-cladding

which allows zero dispersion to be obtained with a reduced

amount of germanium in the core.

P20~ allows a reduction of the drawing temperature and is

always introduced in very small quantities (concentration kept

below 0.2 mole percent). We shall thus neglect the action of

P205 in the calculation of dispersion.

Dispersion data are available in the literature for only a small

number of dopant concentrations, but values of n, n’, and n“,

for any concentrations may, however, be obtained by inter-

polation. We used the Sellmeier expansion to compute the

indexes and their derivatives

(19)

The interpolations were made between the values of n, n’,

or n“ corresponding to pure silica, 5.8 mole percent Ge02 -

doped silica and 1.0 mole percent F-doped silica [15].

Consider first the case of a perfect step-index profile [dotted

line in Fig. l(c)] with a radii ratio c = b/a = 2. Using u = - AJ

Al as a parameter, the core radius a~ for zero total dispersion

at A = 1.55 urn was obtained as a function of the normalized

index-difference Al ; the result corresponds to the curves in

dotted lines in Fig. 2. For a given value of Al, a. increases

with u and, for each u, aO remains smaller than a maximum

value as Al varies. A comparison between the dotted curves

0 = O and u >0 of Fig. 2 shows that zero dispersion for a

singly-clad profde (u = O) requires larger Al and smaller core

radii than for profiles with depressed inner-cladding (a> O).

The curves in full lines in Fig. 2 give the value of the HE1l

mode spot-size U, as a function of Al and for the core radius

aO corresponding to the zero dispersion condition. Marcuse’s

definition of u was adopted [16], [17], In the weak guidance

assumption, the HE1 ~ field distribution is nearly Gaussian in

shape and can be approximated by

2
G(r, U) = —

e-(./CJ)’

C@%
(20)

The mode spot-size u is then the width parameter of the Gaus-

sian distribution G(r, U) which has the maximum launching

efficiency into the actual HE1l mode. In Fig. 3, values of ti/a

are reported and correspond to the profiles considered in Fig.

2. The fundamental mode cutoff V-values are zero for o = O

and o = 0.2, but are 0.766, 1.253, and 1.441 for o = 0.4,0.6,

and 0.8, respectively. As is shown in Fig. 3, @/a increases

dramatically as the EIEII mode approaches its cutoff. For

higher values of V = kanO m, m/a decreases when u in-

creases; far from cutoff, the mode sees an index-difference
equal to Al – A2 = Al (1 + u) and an increase in u leads to a
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dispersion free fibers at k = 1.55 #m, as a function of the normal-
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Fig. 3. Normalized HE I ~ mode spot-size as a function of V =
kano ~. Labeling parameter is o = -A2/A ~.

tighter field confinement to the core, corresponding to a

smaller value of u/a.

The splicing and microbending losses are mainly determined

by the mode spot-size. Realistic values of u cover the range

4-6 flm [18]. Fig. 2 then indicates the interval in which Al

should be chosen; for a given value of u, on the other hand,

the normalized index-difference Al corresponding to zero

dispersion decreases as o increases. We recall that, m being

f~ed, a decrease in Al allows a smaller attenuation for the

fiber because of the smaller excess loss caused by Ge02 in this

case. However, o should not be chosen too large since, in this

case, the HE1l mode operates very near its cutoff and the

tolerances on the fiber structural parameters become very

narrow.

III. TOLERANCE REQUIREMENTS

The two dominant terms in the expression (17) for the co-

efficient D1 are the material dispersion Smo = - Mz~/cO of
silica and the waveguide dispersion SW (17)” (sno = 21.9 ps/

(km “ nm) at A = 1.55 pm). Zero dispersion corresponds ap-

proximately to the relation

Al V
dz(vll) ?wo

dV2 = ~ ‘me”
(21)
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Fig. 4. Variation of the waveguide dispersion coefficient as a function
of V =/tan. ~. Labeling parameter is u = - A2/A ~.

In Fig. 4, Vd2 ( VB)/dV2 is displayed as a function of V, for

the proffles already considered in the preceding section (i.e.,

c = b/a = 2 and u =- A2/A1 = O, 0.2, 0.4,0.6, 0.8). Owing to a

nonzero fundamental mode cutoff, high values and quick

variations of this parameter are observed in cases q = 0.4,0.6,

and 0.8. The condition fok zero dispersion may thus be ob-

tained with a value of Al smaller than in cases g = O or 0.2

[see (21)], but because of the very steep slopes of the curves,

the sensitivity to a small change of parameters then becomes

very strong. Note that (21 ) was only introduced to explain

intuitively the origin of the enhanced sensitivity of the profdes

with deep inner-cladding; in our calculations of dispersion, all

the terms appearing in (1 7)’ and (1 7)’” are retained.

A. Sensitivity to a Change of Parameters

The parameters are the normalized index-differences Al and

AZ, the radii a and b, and the wavelength of operation 1. Al,

A2, a,, and b are chosen so that the wavelength 10 for zero

dispersion coincides with the mean wavelength as of the source.

These parameters can be obtained from Fig. 2 for l.= ~. =

1.55 #m and c = b/a= 2. About these values, D1 may be

expanded as

(22)

The sensitivity coefficients tiD1/6A1 and i3D1/6A2 are dis-

played in Fig. 5(a). For example, when u = 0.2 and Al =

0.425 percent, which corresponds to a HE1l mode spot-size

u = 5 Km (see Fig. 2), 6D1/ti A1 and 8D1/6A2 are equal,

respectively, to 30 and 95 ps/(km “ nm “ percent); a 10 percent

increase in Al and AZ, corresponding to dA1 = 0.425 X 0.1 =

0.0425 percent and dA2 = 0.425 X 0.2 X 0.1 = 0.0085 percent

(dA1 and dA, are expressed in absolute index-difference per-

centages), will increase the dispersion from D1 = O to D 1 = 1“.28

and 0.81 ps/(km “ rim). For the interesting values of Al,

8D1/tiA1 and 6DJ6A2 are positive for 0> 0.2; in the particu-

lar case of a singly-clad profile (O= O), C5D1/6A1 is negative
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for Al <0.64 percent and increasing Al shifts the dispersion

towards negative values. For a fixed Al and increasing u

values, 8D1/6 Al increases, but 8D1/8A2 decreases. However,

for smaller values of Al, the mode approaches its cutoff and

8DJi5A2 also increases with u.

Fig. 5(b) shows values of 8D1/6a and 8D1/8X; tiD1/8b is

always small (16D1/8b I <10 ps/(km onm ourn)) and we did not

report it. 8D1/6a increases with o and is positive; asu increases,

tiDJ8A decreases from some positive value, is equal to zero
for a u-value between 0.4 and 0.6, and assumes very large nega-

tive values as u further increases.

An obvious conclusion is that too high values of u are not of

practical use since they correspond to a high nonzero funda-

mental mode cutoff and thus to an enhanced sensitivity to any

change of parameters. Kawakami expressed the condition for

zero HEII mode cutoff by the fact that the “average” refrac.

tive index in the core and inner-cladding must be positive.

With our notations, this condition can be written as

1
u<—

C2-1.
(23)

In the case under consideration, this corresponds to u < ~.

The singly-clad profde (u= O) has the smallest sensitivi~y

(except for wavelength), but high Al values are required for

zero dispersion; for a given ratio c = b/a, the values of u real-

izing the best tradeoff are thus located near a = 1/(c2 - 1).

B. Tolerances

In a recent paper [19], Cohen et al. reported an expression
for the baseband power transfer function IIc(w) which, in the

case of a Gaussian power spectrum for the light source, can be

rewritten as

ML.(w,h)l = fi&----!g! y

“exp{-+‘k]}’24)
where

z is the length along the fiber

w is the radian baseband frequency

OS is the full rms spectral width of the source, assuming a

Gaussian shape for the laser power spectrum envelope

[19] .

The 3 dB optical bandwidth corresponds to IHC(W, h)l = 0.5

and can be approximated by two very simple expressions.

1) At the Zero Dispersion Wavelength i = iO:

(25)

where tiD1/6X is expressed in ps/(km . nm . ~m) and OSin nm.

BW, given by (25), corresponds to the peak of the band-

width spectra and is inversely proportional to a;.

2) a#A():

375
BW = — GHz” km.

(J$IDII
(26)

Away from the zero dispersion wavelength, the bandwidth

diminishes very quickly and is inversely proportional to us.

To precise tolerance requirements for the various parameters,

we assume that Al, A2, a, and k are centered random variables
with uniform probability y laws; the rms deviations uAl , uAz ,

Oa, and CJkare then equrd, respectively, to 6A1/@, 8AJ@3
Sa/@, 6A/@ where 6X denotes the tolerance on the variable

x(x = Al, A2, a, or A). The rms deviation of the total disper-

sion D1 is then

“D1‘(X=A,:,.,,(ZY(%YY’(27)

For simplicity sake, we assume that, forx = Al, AZ, a, and k,

all the terms (6D1/6x)2 (8x)2 are equal. Substitution of u~l
for IDI I in (26) then gives
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(28)

Assume a spectral width us = 5 nm for the laser source; if we

require, for example, that BW >25 GHz “ km, then the ‘toler-

ance 6X is determined by the relation

6D1
~ 8X= 2.6 ps/(km . nm) for x= Al, A2, a,A.

(29)

As an illustration, Table I reports values of 8AI, 6A2, ~a,

and 6X in the case of a dispersion free fiber with c = 2, a mode

spot-size u = 5 Urn and for o = O, 0.2, 0.4, and 0.6. Singly-clad

fibers (u= O) are less sensitive to radius or Al changes than,

profiles with depressed-cladding but the wavelength tolerances

are smaller. During the fabrication, the routine accuracy on

the parameters is about 10 percent on normalized index-

differences and 5 percent on radii. For c = 0.2, 6AJA1 = 19

percent, and tia/a = 4 percent; for c = 0.4, 8A1/Al = 6 percent

and 8a/a = 2.6 percent. Special attention should then be

devoted to control core radius and also, as u increases, index-

differences.

In the example under consideration, the maximum theoret-

ical bandwidths (25) at zero dispersion are equal to 1.5 103

GHz okm, 2.3 103 GHz. km, 6.6 103 GHz okm, and 4.103

GHz. km for u = O, 0.2, 0.4, and 0.6, respectively. This con-

firms that there is no interest at all to choose too high a value

for u and that any departure from the parameter values achiev-

ing zero dispersion drastically reduces the bandwidth (from

about 3.103 GHz. km to 25 GHz okm for the variations of

Table I).

With the aid of (28) and Figs. 2 and 5(a), (b), the reader may

consider other particular cases; we only stress the importance

of a small source spectral width us. With a monochromatic

source, the tolerances are of course much relaxed.

C. Shift of Zero Dispersion Wavelength AO

For given changes dA1, dA2, CLZaround the parameter values

achieving zero dispersion, the shift of A. can be obtained from

(22) and the results of Fig. 5(a) and (b)

(30)

When the derivatives of D1 assume positive values, an in-

crease in any among the three parameters Al, AZ, a leads to a

decrease in AO. It is also possible to evaluate, at least qualita-

tively, the difference in Xo between a perfect step-index pro-

file and a slightly deformed one: an equivalent step-index

profile with parameters AI, A;, a‘ can be defined for any kind

of deformation [20], [21] and (30) is then applied with

dA1 =A\ - Al, dAz =A4 - Az, da=a’-a (we neglect the

effect of a variation in inner-cladding radius b).
Profile measurements on preforms can indicate departures

dA1, dA2 from the Al and A2 values required to achieve zero

TABLE I
TOLERANCE REQUIREMENTS FOR A FIBER BANDWIDTH LARGER OR EQUAL TO

25 GHz . km AND A SOURCESPECTRALWIDTH u.= 5 nm. THE ZERO
DISPERSION WAVELENGTH IS AO = 1.55 Wm FOR THE VALUES OF Al,
A,. AND a REPORTED (u = –A, /AT AND c = b/a = 2). THE HEII

“MODE SPOT-SIZEI; EQUAL~o ; = 5 pm. AI, Az,’6AI, 8Az
ARE EXPRESSED IN PERCENTSAND a, ~a, 8A IN MICRONS.

E
~\o.-
A1 13.52

A2 0.00

a 2.2

6A1 0.13

6A2-
da 0.17

6) 0.04
+

...
0.2 0.4

.—

0.43 0.37

- 0.086 - 0.148

2.7 3.1

0.08 0.023

0.028 0.027

0.11 0.08

0.06 0.17
——

0.6

0.31

- 0.186

3.5
—.

0.005

0.022

0.06

0.1

dispersion at a given wavelength X.. To maintain zero disper-

sion at A = X., the fiber must be pulled with a radius equal to

a = aO + tia where

1
tia=— —

_{

8D1

}8D1 ~dA1 ‘~dA2 “
(31)

Of course, such a correction is no longer possible for values of

~a smaller than the accuracy achievable on the radius a.

IV. EFFECT OF DOPANT DIFFUSION AND AXIAL DIP

A. Models Used

The dopant diffusion is usually described by an exponential

law. For convenience sake, we describe the effect in a some-

what different way. We assume profile functions fl (r) and

fz (r) [see (l)] having the following expressions.

● For the core region \

fl’r)=+[’+cos{%r}l~ ‘<a’
= o al<r (32)

where al, al are adjustable parameters.

● For the inner-cladding region

=0 r<a20rb2<r

(33)

where

a2 + b2~2 -

2

~2=b;-a;
2

where a2, a2 are adjustable parameters.

A uerfect step-index profile [dotted lines on Fig. l(a), (b)]
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corresponds to al = ~ or cq = CO. For al < ~ and % <‘,

~1(~) and ~z(r) assume the general shape displayed in Fig.
l(a) and (b) (full lines). The core dopants diffusion into the

inner-cladding stops at a distance al > a from the center; the

inner-cladding dopants penetrate into the core region as far as

r=a2 <a. Note that dopants situated at r = N/m do

not migrate. The exponants al and CYzare determined by

expressing that the quantity of dopants is conserved during

the diffusion process; the integrals Jr .fI (r) r dr and Jr ~2(r)r

dr must remain constant as al or az varies and al (al), %(az)

are obtained by solving the following two equations for al

and ct~:

1 - (- 1)~ ~2j

()

a2.—
1+~~ (2j)! 2jal +1 alj-l

_b2-a2~+!~ @Y_ ~2]
2 j=l (2j) ! 2jff2 + 1

b; -a;”

(34)

(35)

The choice of al and a2 as parameters describing the diffu-

sion would have lead to a very simple determination of al and

a2 by (34), (35); we adopt here al and az asleading parameters

because of their more obvious physical significations.

The axial dip was modeled by a power law

[1

‘d

fl(r)=l-~ l-z , O<r<ad
ad

. 1, ad<r<a

= o, a<r (36)

where T is the depth of the dip and ad is the dip radius.

The corresponding profile has the shape displayed in Fig. 6.

For these two departures from a perfect step-index, the

scalar wave equation (4) was solved by a numerical method

described recently [22] . We tested this method in the case of

step-index profiles with depressed inner-cladding: the param-

eters which determine the procedure accuracy were chosen to

ensure a five figure precision on the normalized propagation

constant and its first two derivatives.

B. Results

We consider dispersion free step-index profiles with depressed-

cladding and investigate the dispersion variation caused by

diffusion or axial dip.

In the case of diffusion into the core of inner-cladding dop-

ants, no marked effect was observed as long as a2 > 0.6a and,

for a given a2, the effect was found to increase with a = - A2/

Al. In Fig. 7, results are reported for a2 = 0.6a (dotted lines)

and az = 0.4a (full lines); labeling parameters indicate the
value of u. For u smaller than 0.2, the change of dispersion

was always negligeable.

Core dopants diffusion into the inner-cladding is found to

have more effect. The results are shown in Fig. 8 for al = 1.2a

(dotted line) and al = 1.4a(full line). Two behaviors can be

observed. For a = O, the diffusion causes a positive dispersion

DI and an increase in al yields increasing positive values for

-b -a -ad O ad a b

Fig. 6. Profile with axial dip.

IF=o.4________________________

NORMALISED INDEX DIFFERENCE Al (%)

7

Fig. 7. Change of dispersion in case of inner-cladding dopant diffusion
into the core (33) with a~ = 0.6a (dotted lines) and a? = 0.4a (full
lines). Labeling parameters o = - Az/AI.

0.0

o.4...._.%-
____.-—_.—-—-

“~

0.6

,
03 Q4 0.5 05 ( 7

NORMALISED INOEX .DIFFERENCE A,(9A)

Fig. 8. Change of dispersion in case of core dopant diffusion into the
inner- cladding (32) with a 1 = 1.2a (dotted lines) and a 1 = 1.4a (full
lines). Labeling parameter is o = -A2/A 1.

D1. If u >0.4, then D1 <0 and increasing al gives increasing

negative values of dispersion. u = 0.2 corresponds to an inter-

mediate case in which the two behaviors are observed on each

side of a point where D1 = O for both al = 1.2a and 1.4a

(Al = 0.51 percent, u = 0.2 on Fig. 8). With the notations of

Section III-C the case under consideration corresponds to

dAl = A; - Al <O. When u= O, then 8D1/6Al <O [see Fig.

5(a)] which explains the positive dispersion observed in Fig. 8

(see (22) for D,). If u >0.4, then 8D,/8A, >0 and the dis-

persion assumes negative values.

The dispersion variations caused by an axial dip are shown in

Fig. 9 when ad ‘Z 2, -y= 1 and for ad = 0.5a (dotted lines) and

ad = a (full lines). As in Fig. 9, two behaviors are observed

and depend on the sign of 6D1/r5A1.

So far, we considered only the mode dispersion properties.
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NORMALISED IN05X .DIFFERENCE A, (%)

Fig. 9. Change of dispersion in case of axial dip (36) with fld = 0.5a
(dotted lines) and ad= a (full lines). Labeling parameter is o = -Ad

TABLE II
HEII AND TEOI MODE CUTOFFV-VALUES

II 111 IV

I azla

I

alla adla

0.6 0.4 1.2 1.4 (J,~ ,

#r; +1

HE1l ~- -“;-;0 o.oo~:-0.000 - -

TEOI 2.405 - -
-1 :3

2.43cI 2.466 2.416

HEI1 0.000
7

0,000 @.000
7

0.000 0.000 0.000 0.000

TEoI 2.667 2.686 2 694 2.717 2.?06 2.685

n

2.867
— ——. -—. —

HE~I 0.766 0.780 0.786 I G.784 0.820 0.876 1 200

TEO1 2.821 2.868 2.890 ~:L?84 ? .001
-— ‘l?.!!_&!——.

1: unperturbed step-index profile
11: inner-cladding dopants &ffusion into the core [see (33)]

111: core dopants diffusion into the inner-claddirm [see (32)1
IV: axial dip [see (36)]

The cutoffs are usually much less sensitive to small profile

changes as can be seen in Table II where the HE1l and TEO1
modes cutoff V-values are reported for the three kinds of

deformation considered here.

C Discussion

Following Section III-C we have computed, for the three

examples under consideration, the shift 6A. in zero dispersion

wavelength, and the variations iiz, 6AI, 8A2 in fiber core radius

and normalized index-differences needed individually to main-

tain AO= 1.55 pm. The results are shown in Table III for

a2 = 0.6a, al = 1.2a, ad = 0.5a, and correspond to fibers

having a HEII mode spot-size equal to ~ = 5 pm; the structural

parameters of these fibers are summarized in the upper part

of Table I.

The change of zero dispersion wavelength remains small

except in the case of a dip with o = 0.4 and 0.6; if u = O(singly-

clad fiber), the shift has a sign and order of magnitude in

agreement with other published results [3] . The values of

-.. , .

8AI, 8A2, and &a required to maintain ho at A. = 1.55 pm

are in general smaller than the routine accuracy achievable

during the preform fabrication or fiber pulling. These small

values are due both to the small effect of diffusion or axial

dip and to the large sensitivity to a parameter change.

Two conclusions of practical interest can thus be drawn.

1) Since the diffusion, which most occurs during fiber pulling,

has not a large influence, fiber propagation characteristics can

be predicted from a profile measured on preform. Note that a

quick and highly accurate procedure of preform profiling is

now available. For more details we refer the reader to [23].

2) In practice, the effect of axial dip cannot easily be com-

pensated by a change of parameter because of the limited

accuracy in parameter control; the best solution is then to

reduce the dip by using GeC14 when collapsing the preform.

Lastly, not that the 1 or 2 ps/(km . nm) variation involved

here can make the theoretical bandwidth X length product fall

from about 3.103 GHz . km to 40-75 GHz . km. Note also

that, near zero chromatic dispersion, the polarization mode

dispersion should also be considered [24].
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TABLE HI
CHANCEIN STRUCTURALPARAMETERSAl, Az, a REQUIRED TO MAiNTAtN ZERODISPERSONATLo = 1.55pm [N CASE OF DEFORMATION

I, II, III (AS DESCRIBED BELOW) AND SHIFT 8A0 IN ZERODISPERSIONWAVELENGTHIN CASEOF UNCHANGEDA 1, Az, a. THE HE I1
MODE SPOT-SIZE IS EQUAL TO w = 5 ~m AND THE STRUCTURAL PARAMETERS OF THESE FIBERS ARE SUMMARIZED IN THE UPPER

PART OF TABLE I. 6AI, 8Az ARE EXPRESSEDIN PERCENTSAND ~a, ISAO IN MICRONS.

u

6AI

6A2

.5a

&a.

o. 0.2 0.4

I 11 111 I II III I Ii

0.0 + 0.04 + 0.08 0.0 - 0.003 - 0.01 + 0.004 + 0.006

0.0 ~ 0.001 - 0.004 + 0.005 + 0.007

0.0 - 0.07 -0.14 0.0 -0.004 -0.02 + 0.02 + 0.02

0.0 - 0.01 -0.02 0.0 - 0.002 - 0.009 + 0.03 + 0.05

HI: axial di~ with ad = 0.5a [see (36)] - “

V. CONCLUSION

III

+ 0.02

+ 0.02

+ 0.07

+ 0.14

I I :;6

I

T

t 0.008 + 0.007

+ 0.02 + 0.014

+ 0.04 + 0.04

- 0.09 - 0.09

,11 ~

+ 0.025 I

+ 0.06

+ 0.15

- 0“27 il

Optimum structural parameters for dispersion free fibers

were considered; the choice between possible sets of param-
eters was made by considering the HE1l mode spot-size and

the sensitivity of dispersion to any variation in the fiber

geometrical characteristics. It was shown that singly-clad

structures are less sensitive to changes in index-differences or

core radius than structures with a depressed inner-cladding,

but are more sensitive to a wavelength variation; however,

they require high index-differences which induce an enhanced

fiber attenuation. Structures with depressed inner-cladding

allow smaller index-differences, but for a nonzero fundamen-

tal mode cutoff, the dispersion becomes very sensitive to

geometrical characteristics. The tolerance requirements we

have deduced in various cases are in general more severe than

the 10 and 5 percent routine control on index- differences

and core radius. Tolerance calculations based on loss criteria

will be reported in a forthcoming paper.

The effects of dopant diffusion and axial dip on dispersion

were investigated and found to be small. It would theoretically

be possible to compensate these two effects by a slight change

of geometrical fiber characteristics; this is, however, not easily

feasible in practice because of the limited parameter control

during fabrication. As for the axial dip, the best solution would

be to diminish it by collapsing the preform in GeCIQ vapor.

The dopant diffusion during fiber pulling seems difficult to

suppress; since it has only a small effect, fiber propagation

characteristics may be accurately obtained from profile mea-

sured on preforms.
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Single-Mode Fiber OTDR: Experiment and Theory

DAN L. PHILEN, IAN A. WHITE, JANE F. KUHL, AND STEPHEN C. METTLER

Abstract–An OTDR measurement technique with an end detection

dynamic range of 63 dB is described for use with single-mode fibers. A
theoretical analysis of single-mode fiber backacattering is presented

which predicts loss penalties in single-mode OTDR’S compared with
multimode fibers. The prediction of the critical power levels of about
3-4 W for the onset of non~mear effects in fibers is shown to be in good
agreement with experiment. Fusion welded splices do not demonstrate

significant backscattered power.

lNTRODCiCTION

I N dl optical communications systems there is a need to

examine the transmission medium, after it is installed, for

fault location and for determination of the characteristics of

the medium in a field environment. In the factory most of the

transmission medium parameters are determined by a two-point

technique since both ends of the line are accessible. In a field

situation, however, it is not always practical to have access to

both ends of the transmission medium. Time domain reflec-

tometry was developed for conventional copper wire transmis-

sion systems to overcome this problem and can also be applied

to optical transmission media.

Two early papers on optical time domain reflectometry

(OTDR) [1], [2] outline the basic approach. A short pulse of

light is launched into the fiber and the backscattered signal is

monitored asa function of time (or equivalently, distance) along

the fiber. The magnitude of the backscattered signal is depen-

dent on the Rayleigh scattering, attenuation, imperfections and

splices, and optical power level in the fiber. OTDR can, there-

fore, be used to measure attenuation and splice loss, and for

fault location. For multimode fibers the attenuation and splice

loss measurements are complicated by the uncertainty in the

modal power distribution of the backscattered signal, as well

as the variation in scattering levels of the fibers on either side

of the splice. Typically, at 0.825 pm, the length of fiber that

can be examined is about 5 km.

As interest shifts to longer wavelengths and single-mode fibers,

Manuscript received March 15, 1982; revised May 12, 1982.
The authors are with Bell Laboratories, Norcross, GA 30071.

the range of OTDR measurements must be increased dramati-

cally. The lower loss of long wavelength fibers together with

the high data rate of single-mode fibers make possible repeater-

less spans of fiber in excess of 40 km, which must be examined

during and after installation. For single-mode fibers, attenua-
tion and splice loss measurements are potentially more, reliable

than in multimode fibers since the backscattered information

is contained in only one propagating mode.

In this paper we present a theoretical analysis of OTDR for

single-mode fibers which corrects previously published work

and indicates important considerations in the design of such an

OTDR measurement system. Experimental verification of the

predictions of the onset of nonlinear effects are presented and

a single-mode OTDR which can detect the end of 30 km of

fiber with one-way loss of 1.1 dB/km is demonstrated.

Before a detailed discussion of the results of this paper, the

recent rapid progress of single-mode OTDR necessitates a re-

view of previous work.

OVERVIEW

Recently, a theoretical treatment of backscatterin~ in single-

mode fibers was presented [3], and shortly thereafter, several

papers were published on experimental results of single-mode

OTDR [4]. [6]. Two of the experimental papers [4], [5] used

a modified avalanche photodiode (APD) operating as a photon

counter and a diode laser operating at 0.85 #m. Only a single

channel of the photon counter was used for signal acquisition

with a fault signified by a sudden increase in the dwell time of

the photon counter. Attenuation or splice loss measurements

using this method were not demonstrated. A third experimental

paper [6] used a Q-switched Nd: YAG laser operating at 1.06

Km as the source. A higher power laser source was necessary

to overcome the additional loss penalties not found in multi-

mode OTDR’S.

One design problem with OTDRS is to couple a large amount

of power into a fiber while preventing saturation of the detec-

tor with the Fresnel reflection from the fiber end face. Virtually

ill OTDR schemes attempt to minimize this effect. The scheme

used in [6] couples the input power through a twisted multi-
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