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Tolerance Requirements for Dispersion Free
Single-Mode Fiber Design: Influence of
Geometrical Parameters, Dopant
Diffusion, and Axial Dip

PIERRE-LUC FRANCOIS

Abstract—The dispersion sensitivity to small changes in index-differ-
ences, radius, and wavelength is investigated in the case of dispersion
free single-mode fibers. If a minimum bandwidth is required, tolerances
on the various parameters can then be deduced: singly- and doubly-clad
structures are compared. Constant reference is made to the HE{; mode
spot-size to relate dispersion properties and attenuation. A nonzero
fundamental mode cutoff is shown to induce an enhanced sensitivity
to a change in fiber geometrical characteristics. The effect of dopant
diffusion and axial dip on dispersion is then considered and conclu-
sions are drawn concerning the use of profiles measured on preforms
to predict fiber propagation properties.

I. INTRODUCTION

INCE the successful development of ultra-low loss fibers
S[l], [2], considerable interest was devoted to minimizing
chromatic dispersion [3], [4], especially in the A =1.55 um
window. Singly-clad fibers with GeO,-doped silica core were
first used but high index-differences are then necessary to
achieve zero dispersion; this was found to increase the fiber
losses more than was expected by the increase in Rayleigh
scattering with increasing germanium concentration [5]. Pro-
files with depressed cladding were then used to reduce the
amount of GeO, in the core. With F/P,05; doped inner-
cladding, very low attenuation was again achieved [6]. The
added degree of liberty introduced by this doubly-clad struc-
ture allowed minimizing the dispersion over a wide spectral
range [7], [8]. In some cases, however [9], the fundamental
mode has a nonzero cutoff resulting, as will be shown, in an
enhanced dispersion sensitivity to any change in geometrical
fiber parameters.

We derive a general expression for chromatic dispersion in
the case of a multicomponent structure and apply it to fibers
with GeO,-doped silica core and F/P,05 doped inner-cladding.
Zero chromatic dispersion at A =1.55 um is then considered
in some details with constant reference to the HE,; mode
spot-size, which governs splicing and microbending losses. The
sensitivity of dispersion to changes in index-differences, radii,
and operating wavelength is investigated; we also derive a very
simple expression for the bandwidth X length product. The
preceding results are then used to find tolerance requirements
ensuring a given minimum fiber bandwidth.

Influence of dopant diffusion and axial dip on chromatic
dispersion is then evaluated. The use of a slight change in
geometrical parameters to compensate the effects of diffusion
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and dip is considered and conclusions are drawn concerning
the use of refractive-index profiles measured on preforms to
predict fiber propagation characteristics.

II. DisPERSION FREE FIBERS
A. Notations

Consider weakly guiding structures with depressed inner-
cladding (Fig. 1), having a circular-symmetric refractive-index
distribution n()

n(r)=n5+ (13 - n3) 1) + (13 - n3) ()

where

M

n, = outer-cladding refractive-index (silica substrate)
n; = maximum refractive-index in the core
n, = minimum refractive-index in the inner-cladding
fi(r) and
fa(r) are profile functions corresponding to the core and
inner-cladding, respectively, and take values between
0 and 1 [see Fig. 1(a), (b)].

The profile functions f; (#) and f, (r) are nonzero for 0 <r<
a, and g, <r< b, ; their actual shapes may be chosen to de-
scribe departures from a perfect step-index profile (dotted
lines in Fig. 1) which always occur in practical fibers. In the
subsequent discussion, axial dip and grading caused by dopant
diffusion will be considered.

For future use, we define the following parameters.

-Geometrical Parameters:

a = core radius of the undeformed step-index profile
b =inner-cladding radius of the undeformed step-index

profile
¢ =bfa
2 2 2 2
ny ~ Ao na ~ Ny
Ay =—— A =—— (41, A K1
1 27’!% 2 27’1(2) ( 1 | 2| )
o =‘A2/A1.
Mode Parameters:

k =2m/\, wave number in vacuum
V =kan, V24, = ka~/n? - n3 = normalized frequency
B = propagation constant of the HE; fundamental mode

ﬁ2 _ an(ZJ ~ w2

@
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Fig. 1. Typical shape of profile functions used to describe dopant
distribution in (a) the core and (b) inner-cladding; (c) refractive-index
profile with diffused core and inner-cladding boundaries.
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where Y(7), electric field distribution of the HE;; mode, is
the solution of the scalar wave equation (under the weak guid-
ance assumption) [10], [11]

3)

Iy

A + [K2n2 () - 821 Y() =0 (@)
or

Ar¢(u) + V' [fi(au) - of;(au) - B] ¢(u) =0 3)
with

u=rla, ¢(u)=y(au)

(4, is the transverse part of the scalar Laplacian operator).

In most cases, more than two dopants are used in fiber fabri-
cation and, in the weakly guiding case, (1) is generalized as
[12]

2O =2+ 3 (F - ) i)

i=1

©

where the summation is extended over p dopants.
As above, parameters A;, 6; = -A;/A;(i = 2), and T(3) may
then be defined.

B. Dispersion in Multidopant Fibers

From (4) we deduce a variational expression for the propaga-
tion constant § [13]

_f Iprl"’rdr+f k*n®(r) Virar
0

4]
J- Y2rdr
0

g = Q)
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Owing to the stationary property of this equation, partial
derivation with respect to k yields

f d &?*n* () V2radr
dp o dk
2[3 (E = -
f Virdr
4]

Substitution of (1) into (8) provides a relation between the
effective index n, =B/k and group index N, = dp/dk =d(kn.)/
dk of the mode and the group indexes N; = d(kn;)/dk,i=0,1,2

feNe =noN, + (ny Ny - noNp) Fy + (N3 ~ noN,) Tz

®)

®

The transit time per unit length 7(A) of a mode is equal to
7(A) =N,/c, (c, is the light velocity in vacuum) and may be
expanded as a Taylor series about the mean wavelength A, of
the source

dr A-N) d*r
M=)+ AN = + 2 T 10
=)+ AN G F S G a0)
The dispersion coefficient D = dr {d\ is then equal to
dr 1 dN, \ d°n,
= e T m e — . 1]_
YUAN o AN o ANy (1)

Differentiation of (9) with respect to wavelength yields the
expression for Dy

Dy =58, 5y + Suw (12)
with
>\ n n ” " " !
Sm = - [no + (17 - no) Ty + (nz ~ ny) T2 ] (12)
o
n0A1 dFl < sz
=- + -1y} - 20 (V—2-
o= [23 2 (V 7 1) o\V - T
(12)"
1 , , dr dr
Smw = a [(nl - ngy) (2V—d-71— aV—d—I72>
- ) "
+(m3-ng)V d;] (12)

where the prime indicates differeritiation with respect to
wavelength.,

The assumption of weak guidance was used throughout and
only first order terms in index-differences or their derivatives
were retained.

A simplification of (12) is possible when using a relation
existing between I'y, I',, o, and B. From the definition (2)

of B, one can express §2 as
B2 =K [13 + (- n) B).

(13)

Assuming, for our particular purpose, n, and », to be inde-
pendent of wavelength, we obtain by differentiation of (13)
with respect to k the following expression for n,N,

neN, = 8 d6=n2 +(n} - nd) % (d(VB) *B) )

bt 4
kdk ° dv (14)
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With the same assumption, (9) reads

neN, =nj+(n} - n3) Ty + (3 - n3) Iy

=n} + (n} - n3) [[1 - oT, ]. (15)
Identification of (14) and (15) yields the relation
1 (d(VB) )
- == [——=+B]. 16
Fl 0'F2 5 ( v B ( )
Using (16), the expression for D; may then be rewritten as
Dl =sm"'sw"'smw (17)
with
A n n n 14 n r
sm=__c-—[no+(nl_no)l—‘1+(n2_no)F2] a7
o
nod; . d*(VB) "
= o2t 17
W N | dv? an
1 [ny-n, d*(VvB) d(VB)
= — + -B
me T [ 2 (V av? v
! dF e
+(”1‘7lo)V a7 +("2 o) V&T,%:l (17)

The material dispersion term s,, (17) is equal to a weighted
average of the material dispersions of silica and of dopants 1
and 2, with weights 1-I';-I', T’y and T';. From (3), I'; and
I', are always smaller or equal to the fractions of the total
power which travel in the core and the inner-cladding, respec-
tively; there is equality only in the ideal case of a perfect step-
index profile. The waveguide dispersion terms,, (17)" depends
only on B and has exactly the same expression as in singly-clad
structures [14]. The last term s,,,, (17)'" is the so-called
composite dispersion [14].

In the case of a uniform cladding, n, =n,,0=-A,/A; =0,
and T'; =0. With these simplifications, substitution of (16)
into (17) gives expressions for s,,, sy, and s,,,, which only
depend on the normalized propagation constant B and are
exactly identical to previously published ones [14].

In the case of more than two dopants, s, keeps the same

e

expression (17)", but (17)’ and (17)""' may be generalized as

Sm = CT)\‘[ "“‘Z(” 'ng)ri] (18)
[ ( a’z(VB) d(VB) _ B)
4v: o dv
Z L -ny)V —] sy
i=1

where the summation is extended over p dopants.

The dominant term in (18) is the silica material dispersion
Smo =-Anylc, equal to 21.9 ps/(km-nm) at \=1.55 um.
The composite dispersion s,;,, is often neglected (5,,,,, in order
of 0.1 ps/km-nm), but nevertheless was retained in our
calculations.
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C. Dispersion Free Fiber Design

We consider only the best candidate for dispersion free
propagation in the A = 1.55 um ultra-low loss window: it seems
to be a fiber composed of a GeQO,-doped SiO, core and a
P,0s/F-doped SiO, cladding [6]-[8]. We are thus here in the
case of a three-dopant structure. A small germanium concen-
tration and a low drawing temperature were shown to be two
essential conditions to achieve low losses with fibers made by
MCVD [5]. Fluorine doping creates a depressed inner-cladding
which allows zerc dispersion to be obtained with a reduced
amount of germanium in the core.

P,0; allows a reduction of the drawing temperature and is
always introduced in very small quantities (concentration kept
below 0.2 mole percent). We shall thus neglect the action of
P,0; in the calculation of dispersion.

Dispersion data are available in the literature for only a small
number of dopant concentrations, but values of n, n’, and n”,
for any concentrations may, however, be obtained by inter-
polation. We used the Sellmeier expansion to compute the
indexes and their derivatives

3 AN
; }\2) 19)

The interpolations were made between the values of n, ',
or n" corresponding to pure silica, 5.8 mole percent GeO,-
doped silica and 1.0 mole percent F-doped silica {15].

Consider first the case of a perfect step-index profile [dotted
line in Fig. 1(c)] with a radii ratio ¢ = b/a =2. Using 0 =-A,/
A, as a parameter, the core radius g, for zero total dispersion
at A=1.55 um was obtained as a function of the normalized
index-difference A, ; the result corresponds to the curves in
dotted lines in Fig. 2. For a given value of Ay, @, increases
with ¢ and, for each o, g, remains smaller than a maximum
value as A, varies. A comparison between the dotted curves
0=0 and 0> 0 of Fig. 2 shows that zero dispersion for a
singly-clad profile (o =0) requires larger A, and smaller core
radii than for profiles with depressed inner-cladding (¢ > 0).

The curves in full lines in Fig. 2 give the value of the HE;
mode spot-size w, as a function of A; and for the core radius
a,, corresponding to the zero dispersion condition. Marcuse’s
definition of «w was adopted [16], [17]. In the weak guidance
assumption, the HE;; field distribution is nearly Gaussian in
shape and can be approximated by

e—(l’/w)2 )

G(r,w) = (20)

2
w21
The mode spot-size w is then the width parameter of the Gaus-
sian distribution G(r, w) which has the maximum launching
efficiency into the actual HE,; mode. In Fig. 3, values of w/a
are reported and correspond to the profiles considered in Fig.
2. The fundamental mode cutoft V-values are zero for ¢ =0
and 0=0.2, but are 0.766, 1.253, and 1.441 for 6=04,0.6,
and 0.8, respectively. As is shown in Fig. 3, w/a increases
dramatically as the HE;; mode approaches its cutoff. For
higher values of V =kan,+/2A, wja decreases when ¢ in-
creases; far from cutoff, the mode sees an index-difference
equal to A; ~ Ay =A(1 +0) and an increase in o leads to a
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Fig. 2. Radius (dotted lines) and HE{; mode spot-size (full lines) of

dispersion free fibers at A = 1.55 um, as a function of the normal-
ized index-difference A, in the core. Labeling parameter is o =
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Fig, 3. Normalized HE;; mode spot-size as a function of V=
kan,~/2Aq. Labeling parameter is o = —A,/A;.

tighter field confinement to the core, corresponding to a
smaller value of w/a.

The splicing and microbending losses are mainly determined
by the mode spot-size. Realistic values of «w cover the range
4-6 ym [18]. Fig. 2 then indicates the interval in which A,
should be chosen; for a given value of w, on the other hand,
the normalized index-difference A; corresponding to zero
dispersion decreases as o increases. We recall that, w being
fixed, a decrease in A; allows a smaller attenuation for the
fiber because of the smaller excess loss caused by GeO, in this
case. However, o should not be chosen too large since, in this
case, the HE,; mode operates very near its cutoff and the
tolerances on the fiber structural parameters become very
narrow,

III. TOLERANCE REQUIREMENTS

The two dominant terms in the expression (17) for the co-
efficient D; are the material dispersion s,,, =-Angfc, of
silica and the waveguide dispersion s,, (17)" (5,0 =2 21.9 ps/
(km - nm) at A =1.55 um). Zero dispersion corresponds ap-
proximately to the relation
d*(VB) e,

AV 21
1 de n, ( )

mo-

the terms appearing in (17)’ and (17)
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Fig. 4. Variation of the waveguide dispersion coefficient as a function
of V =kan, /2A,. Labeling parameter is 0 =-A,/4,.

In Fig. 4, Vd*(VB)/dV? is displayed as a function of V, for
the profiles already considered in the preceding section (i.e.,
c=bla=2and 0 =-A,/A; =0,0.2,0.4,0.6,0.8). Owingtoa
nonzero fundamental mode cutoff, high values and quick
variations of this parameter are observed in cases =04,06,
and 0.8. The condition for zero dispersion may thus be ob-
tained with a value of A, smaller than in cases 0 =0 or 0.2
[see (21)], but because of the very steep slopes of the curves,
the sensitivity to a small change of parameters then becomes
very strong. Note that (21) was only introduced to explain
intuitively the origin of the enhanced sensitivity of the profiles
with deep inner-cladding; in our calculations of dispersion, all
"" are retained.

A. Sensitivity to a Change of Parameters

The parameters are the normalized index-differences A, and
A, the radii 2 and b, and the wavelength of operation A. A,
Ay, a,.and b are chosen so that the wavelength A, for zero
dispersion coincides with the mean wavelength A, of the source.
These parameters can be obtained from Fig. 2 for A, =%, =
1.55 ym and c=b/a=2. About these values, D, may be
expanded as

5D, 5D, 8D,
=200 aa, + 220 g, + 221
Dy =5a, it gy dhat o de
8D, 8D,
+—2db+ —Ld,
5 4o+ S 22)

The sensitivity coefficients 6D/6A, and 8D,/8A, are dis-
played in Fig. 5(a). For example, when ¢=0.2 and A, =
0.425 percent, which corresponds to a HE;; mode spot-size
w=5 um (see Fig. 2), 8D,/6A; and 8D,/8A, are equal,
respectively, to 30 and 95 ps/(km - nm - percent);a 10 percent
increase in Ay and A,, corresponding to dA; =0.425X 0.1 ~
0.0425 percent and dA, =0.425 X 0.2 X 0.1 = 0.0085 percent
(dA; and dA, are expressed in absolute index-difference per-
centages), will increase the dispersion fromD; =0 toD; =1.28
and 0.81 ps/(km-nm). For the interesting values of A,
8D,/8A; and 8D,/8A, are positive for o > 0.2; in the particu-
lar case of a singly-clad profile (¢ =0), 8D/8§A; is negative
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Fig. 5. Sensitivity of dispersion to small changes of parameters. (a)
Index-differences A; (full lines) and A, (dotted lines). (b) Core
radius ¢ (full lines) and wavelength A (dotted lines). Labeling param-
eteris o =—Aq/Aq.

for Ay < 0.64 percent and increasing A, shifts the dispersion
towards negative values. For a fixed A; and increasing ¢
values, 8D,/8A, increases, but 6D,/8A, decreases. However,
for smaller values of A, the mode approaches its cutoff and
8D,/84, also increases with o.

Fig. 5(b) shows values of 8D,/8a and 8D,/8X; 6D,/5b is
always small (|6D,/6b| < 10 ps/(km * nm * um)) and we did not
report it. 8D,/8a increases with ¢ and is positive ; as o increases,
8D,/8X decreases from some positive value, is equal to zero
for a g-value between 0.4 and 0.6, and assumes very large nega-
tive values as ¢ further increases.

An obvious conclusion is that too high values of ¢ are not of
practical use since they correspond to a high nonzero funda-
mental mode cutoff and thus to an enhanced sensitivity to any
change of parameters. Kawakami expressed the condition for
zero HE,; mode cutoff by the fact that the “average” refrac-
tive index in the core and inner-cladding must be positive.
With our notations, this condition can be written as

S (23)

c?-1’
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In the case under consideration, this corresponds to o< %

The singly-clad profile (0 =0) has the smallest sensitivity
(except for wavelength), but high A, values are required for
zero dispersion; for a given ratio ¢ = b/a, the values of o real-
izing the best tradeoff are thus located near 0 = 1/(c? - 1).

B. Tolerances

In a recent paper [19], Cohen er al. reported an expression
for the baseband power transfer function H,(w) which, in the
case of a Gaussian power spectrum for the light source, can be
rewritten as

1
|H(w, N)| =
i (oo 2 |221Y
Y4
2
o
<zw—2s—ID1I>
- ex ~ (24
’ 211+ {z o_§ S—D—l ’ )
LAVIRIFSY
where

z is the length along the fiber
is the radian baseband frequency

gg is the full rms spectral width of the source, assuming a
Gaussian shape for the laser power spectrum envelope
[19].

The 3 dB optical bandwidth corresponds to |H,(w,A)| =0.5
and can be approximated by two very simple expressions.
1) At the Zero Dispersion Wavelength X\ = Xg:

w 247108
BW=—=>~ ——GHz -k 25
2~ |6D, " @5)
518

“where 6D,/6X is expressed in ps/(km - nm - um) and o, in nm.

BW, given by (25), corresponds to the peak of the band-
width spectra and is inversely proportional to 62,
2) AF N

BW=~ GHz - km. (26)

05| D4

Away from the zero dispersion wavelength, the bandwidth
diminishes very quickly and is inversely proportional to a;.

To precise tolerance requirements for the various parameters,
we assume that Ay, A, , a, and A are centered random variables
with uniform probability laws; the rms deviations 0a,> 04,
o4, and o, are then equal, respectively, to 8A,/A/3, §A,\/3,
8a/\/3, 8A/A/3 where 8x denotes the tolerance on the variable
x(x =Ay, Ay, a,0r N). The rms deviation of the total disper-
sion D; is then

(2 G GR))
OD1= - — = .
x=A,,A,,00 \OX V3,

For simplicity sake, we assume that, forx = A;, A, , @, and A,
all the terms (8D,/6x)* (8x)? are equal. Substitution of Op,
for |D ] in (26) then gives

@7



FRANCOIS: DISPERSION FREE SINGLE-MODE FIBER DESIGN

375 3
-6x = —.
o BWY 4

Assume a spectral width og = 5 nm for the laser source; if we
require, for example, that BW > 25 GHz - km, then the toler-
ance 8x is determined by the relation
8D,

ox

8D,
bx

(28)

8x =2.6 psf(km-nm) for x=A;,A,,a,\

(29)

As an illustration, Table I reports values of 84,, §4,, 8a,
and 8X in the case of a dispersion free fiber with ¢ = 2, a mode
spot-size & =5 um and for ¢ =0, 0.2,0.4,and 0.6. Singly-clad
fibers (0 =0) are less sensitive to radius or A, changes than
profiles with depressed-cladding but the wavelength tolerances
are smaller. During the fabrication, the routine accuracy on
the parameters is about 10 percent on normalized index-
differences and 5 percent on radii. For ¢=0.2,8A,/A; =19
percent, and 8a/e = 4 percent; for ¢ =0.4,8A,/A; =6 percent
and 8afa=2.6 percent. Special attention should then be
devoted to control core radius and also, as 0 increases, index-
differences.

In the example under consideration, the maximum theoret-
ical bandwidths (25) at zero dispersion are equal to 1.5 10°
GHz - km, 2.3 10®* GHz: km, 6.6 10° GHz - km, and 4.10°
GHz - km for 0 =0, 0.2, 0.4, and 0.6, respectively. This con-
firms that there is no interest at all to choose too high a value
for ¢ and that any departure from the parameter values achiev-
ing zero dispersion drastically reduces the bandwidth (from
about 3.10° GHz-km to 25 GHz - km for the variations of
Table I).

With the aid of (28) and Figs. 2 and 5(a), (b), the reader may
consider other particular cases; we only stress the importance
of a small source spectral width o;,. With a monochromatic
source, the tolerances are of course much relaxed.

C. Shift of Zero Dispersion Wavelength \q

For given changes dA, , dA, , da around the parameter values
achieving zero dispersion, the shift of Ag can be obtained from
(22) and the results of Fig. 5(a) and (b)

1 6D1 8D1 6D1
SNy - ho =- —— { ot dA, +otdA, + o dat
BA=2o = ho apl{sAldA‘ 50,02 ba “}
)

(30)

When the derivatives of D; assume positive values, an in-
crease in any among the three parameters Ay, A, a leads toa
decrease in Ag. It is also possible to evaluate, at least qualita-
tively, the difference in Ao between a perfect step-index pro-
file and a slightly deformed one: an equivalent step-index
profile with parameters A, A, a' can be defined for any kind
of deformation [20}], [21] and (30) is then applied with
dAy = A} - Ay, dAy =Ay - A,, da=a’ - a (we neglect the
effect of a variation in inner-cladding radius b).

Profile measurements on preforms can indicate departures
dA,, dA, from the A, and A, values required to achieve zero
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TABLE I
ToLERANCE REQUIREMENTS FOR A FiBer BanDwinTH LARGER OR Equal TO
25 GHz - km AND A SOURCE SPECTRAL WIDTH 0s = 5 nm. THE ZERO
DispersION WAVELENGTH IS Ao = 1.55 um FoR THE VALUES OF Aj,
A;, AND @ REPORTED (0 = —A;/A; AND ¢ = b/a = 2). THE HEn
MobE SPoT-SizE 1S EQUAL TO w = 5 um. Ay, A, 64, 6A;
ARE EXPRESSED IN PERCENTS AND 4, 84, A IN MICRONS.

G 0. 0.2 0.4 0.6
8q . 0.52 0.43 0.37 0.31
4y 0.60 - 0.086 - 0.148 - 0.186
a 2.2 2.7 3.1 3.5
84y 0.13 0.08 6.023 0.005
8a, - 0.028 0.027 0.022
da 0.17 0.11 0.08 0.06
8 0.04 0.06 0.17 0.1

dispersion at a given wavelength Ay. To maintain zero disper-
sion at A =g, the fiber must be pulled with a radius equal to
a=a, + 8a where

1 (8D,
Sg=-——
¢ {Ml

£3))
dA, + —l—dA2} . (31)

84,

ba

Of course, such a correction is no longer possible for values of
8a smaller than the accuracy achievable on the radius a.

1V. EFFECT OF DOPANT DIFFUSION AND AXxiaL Dip
A. Models Used

The dopant diffusion is usually described by an exponential
law. For convenience sake, we describe the effect in a some-
what different way. We assume profile functions f;(r) and
f2(¥) [see (1)] having the following expressions.

e For the core region

fl(r)=% [1 + cos {ﬂ(i)zal}] , r<a

=0 a, <r (32)

where 4, , a; are adjustable parameters.
o For the inner-cladding region

1 2 _ a2\
fz(r)=5[1+cos {ﬂ(r uzc )2}], a, Sr<by

=0 r<a, orby, <r
(33)
where
2+ 2
cz_a b
2
. _bi-4d}
2

b} =a® +b? - &

where a, , o, are adjustable parameters.
A perfect step-index profile [dotted lines on Fig. 1(a), (b)]
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corresponds to &y = or ap =0, For oy <00 and &, <o,
fi(r) and f,(r) assume the general shape displayed in Fig.
1(a) and (b) (full lines). The core dopants diffusion into the
inner-cladding stops at a distance @, > a from the center; the
inner-cladding dopants penetrate into the core region as far as
r=a, <a. Note that dopants situated at » = V(a® + b%)/2 do
not migrate. The exponants o and &, are determined by
expressing that the quantity of dopants is conserved during
the diffusion process; the integrals o f1(r)r dr and [o f2(r)7
dr must remain constant as @; or @, varies and a;(a4), & (a2)
are obtained by solving the following two equations for a;

and oy :
1 -1y a? a\?
ls O () (9
2 = CH! 2ja; +1 \ay
1 &= (1Y o p2-42
D s (35)
25 @)Y 2jptl bi-a;

The choice of a; and o, as parameters describing the diffu-
sion would have lead to a very simple determination of ¢, and
a, by (34), (35); we adopt here a; and a, asleading parameters
because of their more obvious physical significations.

The axial dip was modeled by a power law

r]*
h(n)=1-7v [ -—} ., 0<r<uqy
aq
=1, ag<r<a
=0, a<r (36)

where v is the depth of the dip and @ is the dip radius.

The corresponding profile has the shape displayed in Fig. 6.

For these two departures from a perfect step-index, the
scalar wave equation (4) was solved by a numerical method
described recently [22]. We tested this method in the case of
step-index profiles with depressed inner-cladding: the param-
eters which determine the procedure accuracy were chosen to
ensure a five figure precision on the normalized propagation
constant and its first two derivatives.

B. Results

We consider dispersion free step-index profiles with depressed-
cladding and investigate the dispersion variation caused by
diffusion or axial dip.

In the case of diffusion into the core of inner-cladding dop-
ants, no marked effect was observed aslong asa, > 0.64 and,
for a given a,, the effect was found to increase with o =-A,/
A;. In Fig. 7, results are reported for g, = 0.6a (dotted lines)
and @, =0.4q (full lines); labeling parameters indicate the
value of 0. For o smaller than 0.2, the change of dispersion
was always negligeable.

Core dopants diffusion into the inner-cladding is found to
have more effect. The results are shown in Fig. 8 fora, =1.2¢4
(dotted line) and a; = 1.4a (full line). Two behaviors can be
observed. For 0 =0, the diffusion causes a positive dispersion
D; and an increase in @, yields increasing positive values for
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Fig. 6. Profile with axial dip.
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Fig. 7. Change of dispersion in case of inner-cladding dopant diffusion

into the core (33) with a, = 0.6e (dotted lines) and ¢, = 0.4« (full

lines). Labeling parameter is 0 = —Ay/Aq.
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Fig. 8. Change of dispersion in case of core dopant diffusion into the
inner-cladding (32) with 2, = 1.2a (dotted lines) and @, = 1.4a (full
lines). Labeling parameter is 6 = —Ap/Aq.

D,. If 0204, then D; <0 and increasing a; gives increasing
negative values of dispersion. ¢ =0.2 corresponds to an inter-
mediate case in which the two behaviors are observed on each
side of a point where Dy =0 for both ¢; =1.2¢ and 1.4a
(A; =0.51 percent, 0 = 0.2 on Fig. 8). With the notations of
Section III-C the case under consideration corresponds to
dA, = A} - A; <0. When o =0, then 8D,/8§A; <0 [see Fig.
5(a)] which explains the positive dispersion observed in Fig. 8
(see (22) for D,). If =04, then 8§D,/6A; >0 and the dis-
persion assumes negative values.

The dispersion variations caused by an axial dip are shown in
Fig. 9 when az =2,y =1 and forag = 0.54 (dotted lines) and
ag =a (full lines). As in Fig. 9, two behaviors are observed
and depend on the sign of 6D;/8A; .

So far, we considered only the mode dispersion properties.
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Fig. 9. Change of dispersion in case of axial dip (36) with ag=0.5¢
(dotted lines) and a4 =« (full lines). Labeling parameter is o = -Ayf

A, (ag=2,y=1).

TABLE 1I
HE;; anp TEo; MobE CuTOFF V-VALUES

i1
[ I ay/a

111 v
aj/a ag/a

0.6

0.4

1.2

1.4

0.0

REyq
TEp1

0.000
2.405

0.000
2.430

0.C00
2.466

0.000
2.416

0.000
2.541

0.2

HE1Y
TEp

0.000
2.667

0.000
2.686

0.000
2 694

0.000
2.717

0.00C
2.206

0.000
2.685

0.000
2.867

0.4

HE11
TEg1

0.766
2.821

0.780
2.868

0.786
2.890

G.784
2.884

0.820
3.001

0.876

z.844

1 200
3.056

0.6

HE11

1.253

1.280
2.997

1.296
3.036

1.277
2.991

1.339
2.946

1.605
3.178

TEgy | 2.922

I: unperturbed step-index profile
II: inner-cladding dopants diffusion into the core [see (33)]
II: core dopants diffusion into the inner-cladding [see (32)]

IV: axial dip [see (36)]

The cutoffs are usually much less sensitive to small profile
changes as can be seen in Table II where the HE,;, and TE,
modes cutoff V-values are reported for the three kinds of
deformation considered here.

C. Discussion

Following Section III-C we have computed, for the three
examples under consideration, the shift 87y in zero dispersion
wavelength, and the variations 8a, 8, 8 A, in fiber core radius
and normalized index-differences needed individually to main-
tain Ao = 1.55 um. The results are shown in Table III for
a, =0.6a, a, =1.2a, a3=0.54, and correspond to fibers
having a HE;; mode spot-size equal to w = 5 um; the structural
parameters of these fibers are summarized in the upper part
of Table I.

The change of zero dispersion wavelength remains small
except in the case of a dip with o = 0.4 and 0.6;if o = 0 (singly-
clad fiber), the shift has a sign and order of magnitude in
agreement with other published results [3]. The values of

84, 8A,, and 8a required to maintain Ay at Ag = 1.55 um
are in general smaller than the routine accuracy achievable
during the preform fabrication or fiber pulling. These small
values are due both to the small effect of diffusion or axial
dip and to the large sensitivity to a parameter change.

Two conclusions of practical interest can thus be drawn.

1) Since the diffusion, which most occurs during fiber pulling,
has not a large influence, fiber propagation characteristics can
be predicted from a profile measured on preform. Note that a
quick and highly accurate procedure of preform profiling is
now available. For more details we refer the reader to [23].

2) In practice, the effect of axial dip cannot easily be com-
pensated by a change of parameter because of the limited
accuracy in parameter control; the best solution is then to
reduce the dip by using GeCl, when collapsing the preform.

Lastly, not that the 1 or 2 ps/(km * nm) variation involved

-here can make the theoretical bandwidth X length product fall

from about 3.10° GHz - km to 40-75 GHz - km. Note also
that, near zero chromatic dispersion, the polarization mode
dispersion should also be considered [24].
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TABLE I1I
CHANGE IN STRUCTURAL PARAMETERS A;, Az, @ REQUIRED To MAINTAIN ZERO DISPERSON AT Ao = 1.55 um m CAsE OF DEFORMATION
I, 11, III (os DESCRIBED BELOW) AND SHIFT 6Ao IN ZERO DISPERSION WAVELENGTH IN Casge oF UNCHANGED Ay, Aj, a. Tue HEn
Mopt SpoT-SiZE 1s EQUAL TO w = 5 um AND THE STRUCTURAL PARAMETERS OF THESE F1BERS ARE SUMMARIZED IN THE UPPER
PART OF TABLE I. 8A;, 8A; ARE EXPRESSED IN PERCENTS AND 84, 8Ao IN MICRONS.

0. 0.2 0.4 0.6
’ I II 111 1 11 I1I I 11 111 I 11 111
SA1 0.0 |+ 0.04 | + 0.08 0.0 {~-0.003] -0.01 |+ 0.004}+ 0.006 |+ 0,02 |+ 0.008 |+ 0.007 |+ 0.025
84y - - - 0.0 | = 0.001 |- 0.004 | + 0.005 [+ 0.007 | + 0.02 +0.02 {+ 0.014 | + 0.06
sa 0.0 | -0.07 | -0.14 0.0 | - 0.004 | - 0.02 + 0.02 | +0.02 | + 0,07 + 0.04 |+ 0.04 | +0.15
LY 0.0 |- 0.01| - 0.02 0.0 |- 0.002}|-0.009 j +0.03 }+0.05 |+0.14 -0.09 |-0.09|~0.27 ]

I: inner-cladding dopant diffusion into the core with a; = 0.6a [see (32)]
II: core dopant diffusion into the inner-cladding with 2y = 1.2a [see (32)]

III: axial dip withag = 0.5a [see (36)]

V. CONCLUSION

Optimum structural parameters for dispersion free fibers
were considered; the choice between possible sets of param-
eters was made by considering the HE;; mode spot-size and
the sensitivity of dispersion to any variation in the fiber
geometrical characteristics. It was shown that singly-clad
structures are less sensitive to changes in index-differences or
core radius than structures with a depressed inner-cladding,
but are more sensitive to a wavelength variation; however,
they require high index-differences which induce an enhanced
fiber attenuation. Structures with depressed inner-cladding
allow smaller index-differences, but for a nonzero fundamen-
tal mode cutoff, the dispersion becomes very sensitive to
geometrical characteristics. The tolerance requirements we
have deduced in various cases are in general more severe than
the 10 and 5 percent routine control on index- differences
and core radius. Tolerance calculations based on loss criteria
will be reported in a forthcoming paper.

The effects of dopant diffusion and axial dip on dispersion
were investigated and found to be small. It would theoretically
be possible to compensate these two effects by a slight change
of geometrical fiber characteristics; this is, however, not easily
feasible in practice because of the limited parameter control
during fabrication. As for the axial dip, the best solution would
be to diminish it by collapsing the preform in GeCl, vapor.
The dopant diffusion during fiber pulling seems difficult to
suppress; since it has only a small effect, fiber propagation
characteristics may be accurately obtained from profile mea-
sured on preforms.
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Single-Mode Fiber OTDR: Experiment and Theory

DAN L. PHILEN, IAN A. WHITE, JANE F. KUHL, anp STEPHEN C. METTLER

Abstract—An OTDR measurement technique with an end detection
dynamic range of 63 dB is described for use with single-mode fibers. A
theoretical analysis of single-mode fiber backscattering is presented
which predicts loss penalties in single-mode OTDR’s compared with
multimode fibers, The prediction of the critical power levels of about
3-4 W for the onset of nonlinear effects in fibers is shown to be in good
agreement with experiment. Fusion welded splices do not demonstrate
significant backscattered power.

INTRODUCTION

N all optical communications systems there is a need to

examine the transmission medium, after it is installed, for
fault location and for determination of the characteristics of
the medium in a field environment. In the factory most of the
transmission mediuvm parameters are determined by a two-point
technique since both ends of the line are accessible. In a field
situation, however, it is not always practical to have access to
both ends of the transmission medium. Time domain reflec-
tometry was developed for conventional copper wire transmis-
sion systems to overcome this problem and can also be applied
to optical transmission media.

Two early papers on optical time domain reflectometry
(OTDR) [1], [2] outline the basic approach. A short pulse of
light is launched into the fiber and the backscattered signal is
monitored as a function of time (or equivalently, distance) along
the fiber. The magnitude of the backscattered signal is depen-
dent on the Rayleigh scattering, attenuation, imperfections and
splices, and optical power level in the fiber. OTDR can, there-
fore, be used to measure attenuation and splice loss, and for
fault location. For multimode fibers the attenuation and splice
loss measurements are complicated by the uncertainty in the
modal power distribution of the backscattered signal, as well
as the variation in scattering levels of the fibers on either side
of the splice. Typically, at 0.825 um, the length of fiber that
can be examined is about 5 km.

As interest shifts to longer wavelengths and single-mode fibers,
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the range of OTDR measurements must be increased dramati-
cally. The lower loss of long wavelength fibers together with
the high data rate of single-mode fibers make possible repeater-
less spans of fiber in excess of 40 km, which must be examined
during and after installation. For single-mode fibers, attenua-
tion and splice loss measurements are potentially more reliable
than in multimode fibers since the backscattered information
is contained in only one propagating mode.

In this paper we present a theoretical analysis of OTDR for
single-mode fibers which corrects previousty published work
and indicates important considerations in the design of such an
OTDR measurement system. Experimental verification of the
predictions of the onset of nonlinear effects are presented and
a single-mode OTDR which can detect the end of 30 km of
fiber with one-way loss of 1.1 dB/km is demonstrated.

Before a detailed discussion of the results of this paper, the
recent rapid progress of single-mode OTDR necessitates a re-
view of previous work.

OVERVIEW

Recently, a theoretical treatment of backscattering in single-
mode fibers was presented [3], and shortly thereafter, several
papers were published on experimental results of single-mode
OTDR [4]~[6]. Two of the experimental papers [4], [ 5] used
a modified avalanche photodiode (APD) operating as a photon
counter and a diode laser operating at 0.85 um. Only a single
channel of the photon counter was used for signal acquisition
with a fault signified by a sudden increase in the dwell time of
the photon counter. .Attenuation or splice loss measurements
using this method were not demonstrated. A third experimental
paper [6] used a Q-switched Nd:YAG laser operating at 1.06
pm as the source. A higher power laser source was necessary
to overcome the additional loss penalties not found in multi-
mode OTDR’s,

One design problem with OTDR’s is to couple alarge amount
of power into a fiber while preventing saturation of the detec-
tor with the Fresnel reflection from the fiber end face. Virtually
all OTDR schemes attempt to minimize this effect. The scheme
used in [6] couples the input power through a twisted multi-
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